

content - result of the natural distribution in the biosphere

content in the body of an adult (70 kg body weight)

element	amount	unit
Са	1000-1500	g
Mg	25-40	g
К	140-180	g
Na	70-100	g
Р	420-840	g
S	~ 140	g
Cl	70-110	g
Fe	3-5	g
Zn	1,4-3	g
F	0,8-2,5	g
Si	1,4	g
Cu	100-180	mg
Mn	10-20	mg
Мо	5-10	mg
Со	1-1,5	mg
Ni	10	mg
Cr	5	mg
V	< 1-20	mg
I	10-30	mg
Se	10-20	mg

clasification

according to quantity (very variable viewpoint)

```
majority (macro) elements >100 mg/kg (ppm) = 0,01%
Na, K, Mg, Ca, Cl, P, S
```

minority elements 10 – 100 mg/kg

Fe, Zn

trace (micro) elements < 10 mg/kg Al, As, B, Cd, Co, Cr, Cu, F, Hg, I, Mn, Mo, Ni, Pb, Se, Sn

ultra trace elements $< 1 \ \mu g/kg$ (ppb)

• according to physiological importance

essential (indispensable), functionally beneficial

Na, K, Mg, Ca, Cl, P, S

Fe, Zn, Mn, Cu, Ni, Co, Mo, Cr, Se, I, F, B, Si

as additives (recommended daily intake in mg)

Ca 800 mg	P 800 mg	Fe 14 mg
Mg 300 mg	Zn 15 mg	Ι 150 μg

non-essential (physiologically indifferent)

Li, Rb, Cs, Ti, Au, Sn, Bi, Te, Br, Al

toxic

Pb, Cd, As, Hg Fe, Zn, Cr, Cu, Ni, Se, Al, Sn (legislation) toxic anions: NO₃⁻, NO₂⁻ (legislation)

Vodka Gold Symphony- 24karat gold flakes

radionuclides: nuclides with an unstable nucleus, subject to radioactive decay

CN⁻, SCN⁻

chemical forms of elements in foods

Metals

Nonmetals and semimetals

- cations
- complex compounds (LMW, HMW)
- poorly soluble salts
- organometalic compounds

- anions
- covalent and organoelement compounds (LMW, HMW)

form	example
elemental form	Fe in fortified foods
Ions (free, hydrated)	Cu ²⁺ , Cu (H ₂ O) ₄ ²⁺ Fe (H ₂ O) ₆ ³⁺ , AsO ₃ ³⁻ , Cl ⁻
little soluble inorg. and org.compounds	sulfides, sulfates, phosphates, oxalates
complex compounds with inorg. ligands	CuCl ₄ ²⁻ , Cu (NH ₃) ₄ ²⁺
complex compounds with org. ligands	complexes with aminoacids, proteins,
	saccharides, phytic acid, polyphenols,
	porfyrins
covalent compounds (non-metals and	sulphur aminoacids, selenocysteine,
semi-metal)	phytic acid
organokovové sl.	methylmercury, tetraethyl lead

example for Fe

heme enzymes:

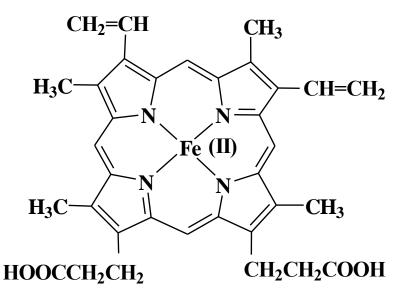
cytochromes, catalase, peroxidase

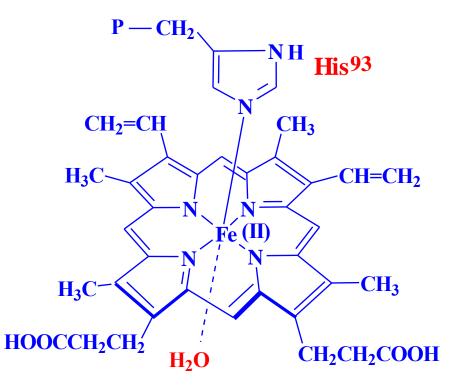
non-heme enzymes :

succindehydrogenase, xanthinoxidase, flavin oxidoreductase, aconitase

transport proteins:

hemoglobin (erythrocytes), myoglobin (muscles) O₂

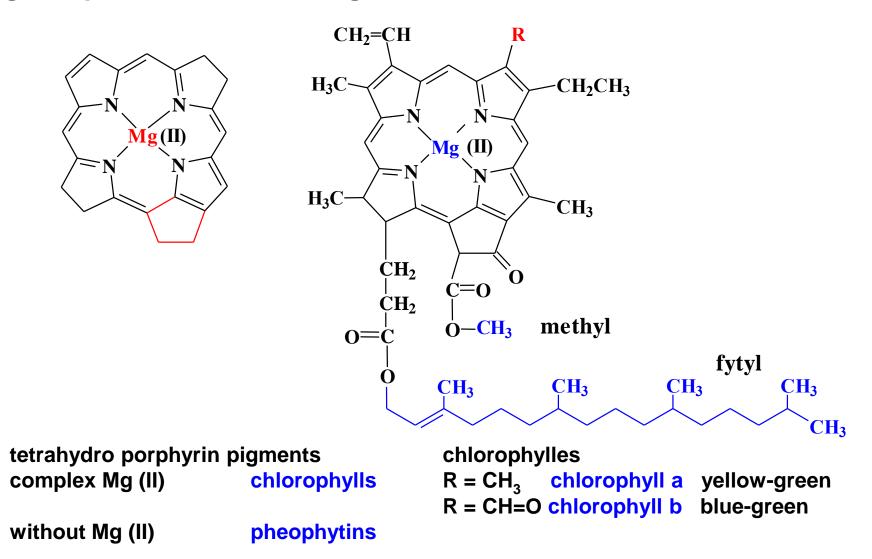

transferrin (plasma) Fe

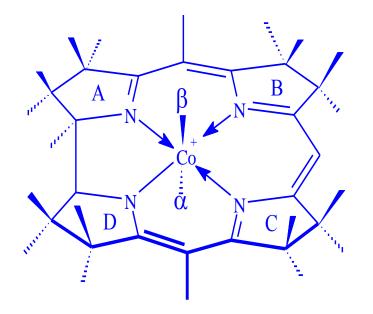

storage proteins:

ferritin, homosiderin (spleen, liver, bones) Fe

Complexes

heme pigments meat, meat products

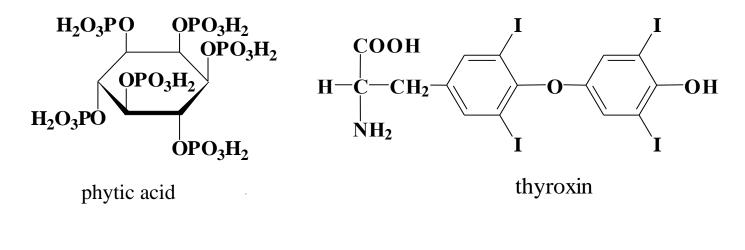


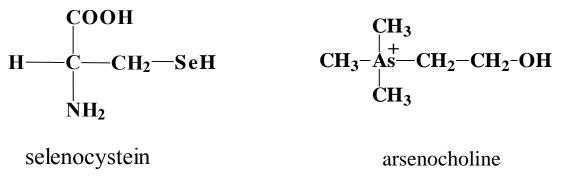


heme (Fe²⁺) haematin (Fe³⁺)

haemoglobin myoglobin (P=rest of globin 16,8 kDa)

Chlorophyll pigments green parts of fruits and vegetables


Corrinoids


central atom **Co** 6 coordination bonds

α = 5,6-dimethylbenzimidazol cobalamins

<mark>β =</mark> OH	hydroxycobalamin
H ₂ O	aquacobalamin
CH ₃	methylcobalamin
CN	cyanocobalamin
deoxyadenosylcobalamin	coenzyme B ₁₂

covalent compounds

CH₃-Hg⁺

methylmercury

biochemical function of essential elements majority elements

Na

osmotic pressure, acid-basic equilibrium, enzymes activation

Κ

osmotic pressure, acid-basic equilibrium, enzymes activation, muscle activity

Cl

osmotic pressure, (combined with K+, Na+ /Cl-), digestion (HCl)

Mg

building function, muscle and neural activity, blood coagulation

Ρ

building function, energetic metabolisms, enzymes activation, catalytic, regulative functions

S biocatalysts (components of proteins/vitamins)

minority elements

Fecatalytic, transport activityZncatalytic

trace elements

Cu	catalytic, transport activity (O2 / invertebrates)
Mn	activation, catalytic activity
Ni	catalytic activity (plants, mikroorganisms))
Со	catalytic activity (vitamin B ₁₂)
Мо	catalytic activity (plants, microorganisms)
Cr	catalytic activity (glucose-tolerant factor)
V	activation
Se	catalytic activity (connection to vitamin E)
1	regulatory activity (hormones thyroid gland)
F	building function (bones and teeths)
В	activation, building function (plant, pectin)
Si	building function (collagen, mucopolysaccharides)

Nutrition

daily intake (mg) recommended by nutritionists

majority elements

Na	500 mg	Mg	350
K	2000	Ca	800
Cl	75	Ρ	1200
S	not determined (100 – 600)*		
minor	ity elements		
Fe	10 – 15	Zn	10 – 15
trace	elements		
Se	0,01 (children)–0,07 (adults)	В	not determined (2 – 10) *
1.1	0,04 – 1,5	Sn	not determined (3) *
F	0,1-4	Si	not determined (20 – 50) *
Cu	1,5 – 3	Mn	2 – 5
Ni	not determined (0,15–0,7)*	Со	not determined (0,005–0,01)*
Мо	0,08 – 0,25	Cr	0,05–0,2
	* = usual daily intak	ke	

Nutrition

Recommended Daily Intake (RDI) - the daily intake level of a nutrient that is considered to be sufficient to meet the requirements of 97–98% of healthy individuals legislation

VYHLÁŠKA č. 225/2008 Sb., requirements for food supplements and the enrichment of foodstuffs (Czech Rep.)

(mg)

majority elements

K Cl	2000 800	Ca P	800 700
Mg	375	s, Na	not defined
mino	rity elements		
Fe	14	Zn	10
trace	elements		
Se	0,055	Мо	0,050
1	0,150	Cu	1
F	3,5	Mn	2
Cr	0.040		

RDI

biological availability and accesibility

The bioavailability of an element is defined as the fraction of ingested nutrient that is absorbed and subsequently utilised for normal physiological functions.

Fairweather-Tait S., Hurrell R.F.: Nutr. Res. Int. 9, 295, 1996 Fairweather-Tait S. et al. : Int. J. Vitam. Nutr. Res. 75, 371, 2005

bio-availability ≠ *bio-accessibility* = *availability*

- difficult to interpret the relationship of diet vs. biol. availability
- studies of bioavailability of elements
- impact of technology
- effect of combination of foods in the diet
- speciation analysis of elements

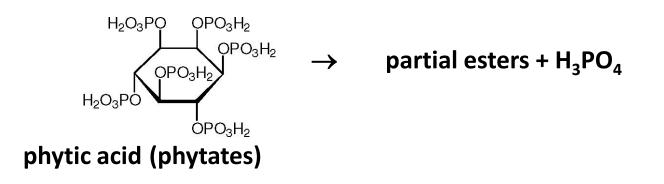
occurrence and important sources

majority elements

- Na NaCl (~ 75%), NaH-glutamate
- K tea, coffee, other plant foods
- Cl NaCl, contaminants (persistent pesticides, PCB, 3-MCPD), additives (including chlorinated water)
- Mg cereals, legumes, other plant foods
- Ca cheese, milk, fish, yolk, legumes
- P milk, cheese, yolk, legumes, nuts, additives (mostly phosphates)
- s eggs, meat, cereals, legumes

minority elements

- Fe meat, eggs, legumes, special cheeses, tea, cacao, additives and contaminants
- Zn meat, eggs, legumes, tea


trace elements

- **Cu** cheeses, cereals, legumes, tea, mushrooms, contaminants
- Mn cereals, legumes, forest fruits, tea, spices, meat
- Ni cereals, legumes, nuts, tea, cacao, contaminants
- Co cereals, cereals, nuts, tea
- Mo cereals
- **Cr** yeast, tea, cereals, contaminants
- V cereals
- Se fish, invertebrates, eggs, plants (fortification)
- I fish and algae, fortification
- F tea, fortification
- B cereals, nuts, fruits
- Si cereals, legumes

utilisation

forms, resorption

- Cagenerally from foods5 15 %bread40 %phytincabbage40 70 %calcium lactateoxalates2 5 %oxalic acid
- Cereals, legumes: phytic acid (phytin), partly hydrolyzed by phytases (endogenic, gut-microorganisms)

additives: phytic acid, salts, H₃PO₄, polyphosphates (water binding)

- Fe resorption 5 15%, Fe (II) > Fe (III), Fe in hem phytates (Fe, Zn), phenolic compounds additives: elementary Fe, inorg. a org. compounds (fumarate, baby foods)
 - iodination of salt, foods, antithyreoid compounds: natural (goitrin and other goitrogens), contaminants (PCB, pesticides, veterinary drugs)

toxic elements

contaminants, tolerable limits in legislation

natural sources of contamination

- disintegration of rocks
- fires
- volcanic activities
- floods

anthropogenic sources of contamination

- burning of fossil fuels
- transportation
- industry (especially production of metals)
- agriculture (fertilizers and other chemicals)
- wastes

- Pb accumulators, sheet metal, pipes (metal packaging material), painting material and pigments, additives in gasoline: $Pb(CH_3)_4$, $Pb(C_2H_5)_4$
- Cd anticorrosion protection (painting), painting material and pigments (CdS),PVC stabilizers (salts of fatty acids), phosphates as fertilizers, smoking
- Hg volcanic activity, burning of coal, agrochemicals (phenylmercurichloride),
 wastes (bateries, switches, electrodes, thermometers, amalgams)
 biochemical transformations:

biomethylation (organomercury compounds), microorganims, microscopic fungi

As metallurgy, burning of coal, agrochemicals, veterinary drugs, pigments chemical transformations: organoarsenic compounds - fishes

Food	TDI in mg.kg ⁻¹								
	As <mark>Sn</mark>	Al ^{b), c)} Cr	Cd	Cu	Ni	Pb	Hg	Zn	Fe ^{b), e)}
Meat	0,1	10,0	0,1 ^{a)}	5,0	0,5	0,1	0,05	50 ^{a)}	
Milk	0,05	1,0	0,01	0,4	0,1	0,02	0,01	10,0 ^{a)}	
Eggs	0,1		0,02 ^{a)}	3,0 a)	0,1 ^{a)}	0,03	25,0 ^{a)}	
Bread			0,07			0,1			
Sugar	1,0		0,02	1,0		1,0	0,01		
Fruits	0,5		0,05 ^{a)}	5,0		0,1	0,01	10,0 ^{a)}	
Vegetables	0,5		0,1 ^{d)}	10,0	^{a)} 2,5	0,3	0,03	25,0 ^{a)}	
Non-alcoholic beverages	0,1	5,0	0,05	3,0		0,02	0,003	5 ,0 ^{a)}	
Beer	0,2	5,0	0,01	5,0		0,05 °	a)		
Food A	0,5 ^{a)} 100,	0 ^{a)} 0,2	^{a)} 0,1 ^{a)}	20,0	^{a)} 2,0 ^{a)}		0,05 ^{a)}	50,0 ^{a)}	
Drinks A	0,5 ^{a)} 100,	0 ^{a)} 0,1	a)	20,0	^{a)} 1,0 ^{a)}				
Food B	3,0 ^{a)} 200,	0 ^{a)} 4,0	a) 0,5 a)	80,0	^{a)} 6,0 ^{a)}	8,0 ^{a)}	0,5 ^{a)}	80,0 ^{a)}	
Drinks B	3,0 ^{a)} 200,	0 ^{a)} 1,0	a)	20,0	^{a)} 6,0 ^{a)}				

Vyhláška Ministerstva zdravotnictví č. 53/2002 - Decree of the Ministry of Health

A = baby food, most of the basic food

B = other food (not consumed frequently)

nitrates and nitrites

contenthigh:vegetableslow:fruits (melon, banana)

food classification

• with high content (> 1000 mg.kg⁻¹)

lettuces, endive, spinach, spinach beet, Chinese cabbage, radish, celery, rhubarb, corn

- with median content (250-1000 mg.kg⁻¹) cabbage, kale, cauliflower, eggplant, parsley, carrot, broccoli, garlic, potatoes
- with low content (< 250 mg.kg⁻¹)

Brussels sprouts, onion, tomato, pea, cucumber, artichoke, asparagus

ADI $(NO_3^{-}) = 3.5 \text{ mg.kg}^{-1}$

ADI $(NO_2) = 0.2 \text{ mg.kg}^{-1}$ (lethal dosage 32 mg.kg⁻¹)

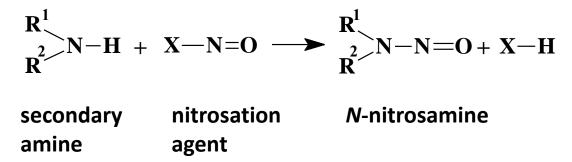
methemoglobinemia

a disorder characterized by the presence of a higher than normal level of methemoglobin in the blood tissue hypoxia can occur

 symptoms of methemoglobinemia (methemoglobin >1%) include shortness of breath and cyanosis

 infants under 6 months of age are particularly susceptible to methemoglobinemia caused by nitrates ingested in drinking water (called bluebaby syndrome

Hg (Fe ²⁺) + NO₂⁻ \rightarrow MHg (Fe ³⁺) + NO


The current legislation standard of 15 ppm nitrate-nitrogen for drinking water is specifically designed to protect infants

nitrosamines

endogenous contaminants

products of reaction of sec. amines with nitrosation agents

toxicology - mutagenic, teratogenic and carcinogenic effects

• under acidic conditions the nitrite forms nitrous acid (HNO_2) , which is protonated and splits into the nitrosonium cation $N \equiv O^+$ and water: $H_2NO_2^+ = H_2O + NO^+$. The nitrosonium cation then reacts with an amine to produce nitrosamine

• high temperatures, as in frying, can also enhance the formation of nitrosamines

 these processes lead to significant levels of nitrosamines in many foodstuffs, especially beer, fish, and fish byproducts,

also in meat and cheese products preserved with nitrite pickling salt

legislation established limits on the amount of nitrites used in meat products in order to decrease cancer risk in the population